Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Sci Rep ; 12(1): 18024, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2087299

ABSTRACT

As the rate of vaccination against COVID-19 is increasing, demand for overseas travel is also increasing. Despite people's preference for duty-free shopping, previous studies reported that duty-free shopping increases impulse buying behavior. There are also self-reported tools to measure their impulse buying behavior, but it has the disadvantage of relying on the human memory and perception. Therefore, we propose a Brain-Computer Interface (BCI)-based brain signal processing methodology to supplement these limitations and to reduce ambiguity and conjecture of data. To achieve this goal, we focused on the brain's prefrontal cortex (PFC) activity, which supervises human decision-making and is closely related to impulse buying behavior. The PFC activation is observed by recording signals using a functional near-infrared spectroscopy (fNIRS) while inducing impulse buying behavior in virtual computing environments. We found that impulse buying behaviors were not only higher in online duty-free shops than in online regular stores, but the fNIRS signals were also different on the two sites. We also achieved an average accuracy of 93.78% in detecting impulse buying patterns using a support vector machine. These results were identical to the people's self-reported responses. This study provides evidence as a potential biomarker for detecting impulse buying behavior with fNIRS.


Subject(s)
Brain-Computer Interfaces , COVID-19 , Humans , Spectroscopy, Near-Infrared/methods , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiology , Biomarkers
2.
IEEE Trans Biomed Eng ; 69(6): 1983-1994, 2022 06.
Article in English | MEDLINE | ID: covidwho-1997179

ABSTRACT

OBJECTIVE: Brain-computer interfaces (BCI) studies are increasingly leveraging different attributes of multiple signal modalities simultaneously. Bimodal data acquisition protocols combining the temporal resolution of electroencephalography (EEG) with the spatial resolution of functional near-infrared spectroscopy (fNIRS) require novel approaches to decoding. METHODS: We present an EEG-fNIRS Hybrid BCI that employs a new bimodal deep neural network architecture consisting of two convolutional sub-networks (subnets) to decode overt and imagined speech. Features from each subnet are fused before further feature extraction and classification. Nineteen participants performed overt and imagined speech in a novel cue-based paradigm enabling investigation of stimulus and linguistic effects on decoding. RESULTS: Using the hybrid approach, classification accuracies (46.31% and 34.29% for overt and imagined speech, respectively (chance: 25%)) indicated a significant improvement on EEG used independently for imagined speech (p = 0.020) while tending towards significance for overt speech (p = 0.098). In comparison with fNIRS, significant improvements for both speech-types were achieved with bimodal decoding (p<0.001). There was a mean difference of ∼12.02% between overt and imagined speech with accuracies as high as 87.18% and 53%. Deeper subnets enhanced performance while stimulus effected overt and imagined speech in significantly different ways. CONCLUSION: The bimodal approach was a significant improvement on unimodal results for several tasks. Results indicate the potential of multi-modal deep learning for enhancing neural signal decoding. SIGNIFICANCE: This novel architecture can be used to enhance speech decoding from bimodal neural signals.


Subject(s)
Brain-Computer Interfaces , Deep Learning , Electroencephalography/methods , Humans , Neural Networks, Computer , Speech
3.
Sensors (Basel) ; 22(2)2022 Jan 11.
Article in English | MEDLINE | ID: covidwho-1630085

ABSTRACT

Research studies on EEG-based mental workload detection for a passive BCI generally focus on classifying cognitive states associated with the performance of tasks at different levels of difficulty, with no other aspects of the user's mental state considered. However, in real-life situations, different aspects of the user's state such as their cognitive (e.g., level of mental workload) and affective (e.g., level of stress/anxiety) states will often change simultaneously, and performance of a BCI system designed considering just one state may be unreliable. Moreover, multiple mental states may be relevant to the purposes of the BCI-for example both mental workload and stress level might be related to an aircraft pilot's risk of error-and the simultaneous prediction of states may be critical in maximizing the practical effectiveness of real-life online BCI systems. In this study we investigated the feasibility of performing simultaneous classification of mental workload and stress level in an online passive BCI. We investigated both subject-specific and cross-subject classification approaches, the latter with and without the application of a transfer learning technique to align the distributions of data from the training and test subjects. Using cross-subject classification with transfer learning in a simulated online analysis, we obtained accuracies of 77.5 ± 6.9% and 84.1 ± 5.9%, across 18 participants for mental workload and stress level detection, respectively.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Humans , Risk , Workload
4.
Sensors (Basel) ; 21(18)2021 Sep 19.
Article in English | MEDLINE | ID: covidwho-1430953

ABSTRACT

The pandemic emergency of the coronavirus disease 2019 (COVID-19) shed light on the need for innovative aids, devices, and assistive technologies to enable people with severe disabilities to live their daily lives. EEG-based Brain-Computer Interfaces (BCIs) can lead individuals with significant health challenges to improve their independence, facilitate participation in activities, thus enhancing overall well-being and preventing impairments. This systematic review provides state-of-the-art applications of EEG-based BCIs, particularly those using motor-imagery (MI) data, to wheelchair control and movement. It presents a thorough examination of the different studies conducted since 2010, focusing on the algorithm analysis, features extraction, features selection, and classification techniques used as well as on wheelchair components and performance evaluation. The results provided in this paper could highlight the limitations of current biomedical instrumentations applied to people with severe disabilities and bring focus to innovative research topics.


Subject(s)
Brain-Computer Interfaces , COVID-19 , Wheelchairs , Electroencephalography , Humans , Movement , SARS-CoV-2
5.
Sensors (Basel) ; 21(6)2021 Mar 12.
Article in English | MEDLINE | ID: covidwho-1143562

ABSTRACT

Recently, studies on cycling-based brain-computer interfaces (BCIs) have been standing out due to their potential for lower-limb recovery. In this scenario, the behaviors of the sensory motor rhythms and the brain connectivity present themselves as sources of information that can contribute to interpreting the cortical effect of these technologies. This study aims to analyze how sensory motor rhythms and cortical connectivity behave when volunteers command reactive motor imagery (MI) BCI that provides passive pedaling feedback. We studied 8 healthy subjects who performed pedaling MI to command an electroencephalography (EEG)-based BCI with a motorized pedal to receive passive movements as feedback. The EEG data were analyzed under the following four conditions: resting, MI calibration, MI online, and receiving passive pedaling (on-line phase). Most subjects produced, over the foot area, significant event-related desynchronization (ERD) patterns around Cz when performing MI and receiving passive pedaling. The sharpest decrease was found for the low beta band. The connectivity results revealed an exchange of information between the supplementary motor area (SMA) and parietal regions during MI and passive pedaling. Our findings point to the primary motor cortex activation for most participants and the connectivity between SMA and parietal regions during pedaling MI and passive pedaling.


Subject(s)
Brain-Computer Interfaces , Cortical Excitability , Motor Cortex , Electroencephalography , Humans , Imagination
SELECTION OF CITATIONS
SEARCH DETAIL